Join us on
Star us on
Get Started
Slack
GitHub
Get Started
v2.5 (latest) v2.2 (stable) v2.1 (earlier version) v2.0 (earlier version) v1.3 (earlier version)
  • YUGABYTEDB CORE
    • Quick start
      • 1. Install YugabyteDB
      • 2. Create a local cluster
      • 3. Explore distributed SQL
      • 4. Build an application
        • Java
        • NodeJS
        • Go
        • Python
        • Ruby
        • C#
        • PHP
        • C++
        • C
        • Scala
    • Explore features
      • YSQL vs PostgreSQL
        • Schemas and Tables
        • Data Types
      • Fault tolerance
      • Horizontal Scalability
        • Scaling Transactions
        • Sharding Data
      • Transactions
        • Distributed Transactions
        • Isolation Levels
        • Explicit Locking
      • JSON Support
      • Multi-Region Deployments
        • Sync replication (3+ regions)
        • Async Replication (2+ regions)
        • Row-Level Geo-Partitioning
      • Follower reads
      • Colocated tables
      • Change data capture (CDC)
      • Observability
        • Prometheus Integration
    • Develop
      • Learn app development
        • 1. SQL vs NoSQL
        • 2. Data modeling
        • 3. Data types
        • 4. ACID transactions
        • 5. Aggregations
        • 6. Batch operations
        • 7. Date and time
        • 8. Strings and text
        • 9. TTL for data expiration
      • Ecosystem integrations
        • Apache Kafka
        • Apache Spark
        • JanusGraph
        • KairosDB
        • Presto
        • Metabase
      • Build GraphQL apps
        • Hasura
        • Prisma
      • Real-world examples
        • E-Commerce app
        • IoT fleet management
        • Retail Analytics
      • Explore sample apps
      • Best practices
    • Migrate
      • Migration process overview
      • Migrate from PostgreSQL
        • Convert a PostgreSQL schema
        • Migrate a PostgreSQL application
        • Export PostgreSQL data
        • Prepare a cluster
        • Import PostgreSQL data
        • Verify Migration
    • Deploy
      • Deployment checklist
      • Manual deployment
        • 1. System configuration
        • 2. Install software
        • 3. Start YB-Masters
        • 4. Start YB-TServers
        • 5. Verify deployment
      • Kubernetes
        • Single-zone
          • Open Source
          • Amazon EKS
          • Google Kubernetes Engine
          • Azure Kubernetes Service
        • Multi-zone
          • Amazon EKS
          • Google Kubernetes Engine
        • Multi-cluster
          • Google Kubernetes Engine
        • Best practices
        • Connect clients
      • Docker
      • Public clouds
        • Amazon Web Services
        • Google Cloud Platform
        • Microsoft Azure
      • Multi-DC deployments
        • Three+ data center (3DC)
        • Two data center (2DC)
        • Read replica clusters
      • Change data capture (CDC)
        • CDC to Kafka
    • Benchmark
      • TPC-C
      • sysbench
      • YCSB
      • Key-value workload
      • Large datasets
      • Scalability
        • Scaling queries
      • Resilience
        • Jepsen testing
    • Secure
      • Security checklist
      • Enable Authentication
        • Enable User Authentication
        • Configure ysql_hba_conf_csv
      • Authentication Methods
        • Password Authentication
        • LDAP Authentication
        • Host-Based Authentication
        • Trust Authentication
      • Role-Based Access Control
        • Overview
        • Manage Users and Roles
        • Grant Privileges
        • Row-Level Security (RLS)
        • Column-Level Security
      • Encryption in transit
        • Create client certificates
        • Create server certificates
        • Enable server-to-server encryption
        • Enable client-to-server encryption
        • Connect to clusters
      • Encryption at rest
      • Column-Level Encryption
      • Audit Logging
        • Configure Audit Logging
        • Session-Level Audit Logging
        • Object-Level Audit Logging
    • Manage
      • Back up and restore
        • Back up data
        • Restore data
        • Snapshot and restore data
      • Migrate data
        • Bulk import
        • Bulk export
      • Change cluster configuration
      • Diagnostics reporting
      • Upgrade a deployment
      • Grow cluster
    • Troubleshoot
      • Troubleshooting
      • Common error messages
      • Cluster level issues
        • YCQL connection issues
        • YEDIS connection Issues
        • Recover tserver/master
        • Replace a failed YB-TServer
        • Replace a failed YB-Master
      • Node level issues
        • Check servers
        • Inspect logs
        • System statistics
        • Disk failure
    • Contribute
      • Core database
        • Contribution checklist
        • Build the source
        • Configure a CLion project
        • Run the tests
  • YUGABYTE PLATFORM
    • Yugabyte Platform
      • Overview
        • Install
        • Configure
      • Install Yugabyte Platform
        • Prerequisites
        • Prepare the environment
        • Install software
        • Prepare nodes (on-prem)
        • Uninstall software
      • Configure Yugabyte Platform
        • Create admin user
        • Configure the cloud provider
        • Configure the backup target
        • Configure alerts and health checking
        • Create and edit instance tags
      • Create deployments
        • Multi-zone universe
        • Multi-region universe
        • Read replica cluster
      • Manage deployments
        • Start and stop processes
        • Add a node
        • Remove a node
        • Edit a universe
        • Edit configuration flags
        • Upgrade the YugabyteDB software
        • Delete a universe
        • Migrate to Helm 3
      • Back up and restore universes
        • Configure backup storage
        • Back up universe data
        • Restore universe data
        • Schedule data backups
      • Security
        • Security checklist
        • Customize ports
        • Authorization platform
        • Create a KMS configuration
        • Enable encryption at rest
        • Enable encryption in transit (TLS)
        • Network security
      • Alerts and monitoring
        • Live Queries dashboard
      • Troubleshoot
        • Install and upgrade issues
        • Universe issues
      • Administer Yugabyte Platform
        • Back up and restore Yugabyte Platform
  • YUGABYTE CLOUD
    • Yugabyte Cloud
      • Free tier
      • Create clusters
      • Monitor clusters
      • Create databases
      • Manage database access
      • Connect to clusters
  • REFERENCE
    • Reference
    • Architecture
      • Design goals
      • Key concepts
        • Universe
        • YB-TServer Service
        • YB-Master Service
      • Core functions
        • Universe creation
        • Table creation
        • Write IO path
        • Read IO path
        • High availability
      • Layered architecture
      • Query layer
        • Overview
      • DocDB transactions layer
        • Transactions overview
        • Transaction isolation levels
        • Explicit locking
        • Single-row transactions
        • Distributed transactions
        • Transactional IO path
      • DocDB sharding layer
        • Hash & range sharding
        • Tablet splitting
        • Colocated tables
      • DocDB replication layer
        • Replication
        • xCluster replication
        • Read replicas
        • Change data capture (CDC)
      • DocDB storage layer
        • Persistence
        • Performance
    • APIs
      • YSQL
        • The SQL language
          • SQL statements
            • ABORT
            • ALTER DATABASE
            • ALTER DEFAULT PRIVILEGES
            • ALTER DOMAIN
            • ALTER GROUP
            • ALTER POLICY
            • ALTER ROLE
            • ALTER SEQUENCE
            • ALTER TABLE
            • ALTER USER
            • BEGIN
            • CALL
            • COMMENT
            • COMMIT
            • COPY
            • CREATE AGGREGATE
            • CREATE CAST
            • CREATE DATABASE
            • CREATE DOMAIN
            • CREATE EXTENSION
            • CREATE FUNCTION
            • CREATE GROUP
            • CREATE INDEX
            • CREATE OPERATOR
            • CREATE OPERATOR CLASS
            • CREATE POLICY
            • CREATE PROCEDURE
            • CREATE ROLE
            • CREATE RULE
            • CREATE SCHEMA
            • CREATE SEQUENCE
            • CREATE TABLE
            • CREATE TABLE AS
            • CREATE TRIGGER
            • CREATE TYPE
            • CREATE USER
            • CREATE VIEW
            • DEALLOCATE
            • DELETE
            • DO
            • DROP AGGREGATE
            • DROP CAST
            • DROP DATABASE
            • DROP DOMAIN
            • DROP EXTENSION
            • DROP FUNCTION
            • DROP GROUP
            • DROP OPERATOR
            • DROP OPERATOR CLASS
            • DROP OWNED
            • DROP POLICY
            • DROP PROCEDURE
            • DROP ROLE
            • DROP RULE
            • DROP SEQUENCE
            • DROP TABLE
            • DROP TRIGGER
            • DROP TYPE
            • DROP USER
            • END
            • EXECUTE
            • EXPLAIN
            • GRANT
            • INSERT
            • LOCK
            • PREPARE
            • REASSIGN OWNED
            • RESET
            • REVOKE
            • ROLLBACK
            • SELECT
            • SET
            • SET CONSTRAINTS
            • SET ROLE
            • SET SESSION AUTHORIZATION
            • SET TRANSACTION
            • SHOW
            • SHOW TRANSACTION
            • TRUNCATE
            • UPDATE
            • VALUES
          • WITH clause
            • WITH clause—SQL syntax and semantics
            • recursive WITH
            • case study—traversing an employee hierarchy
            • traversing general graphs
              • graph representation
              • common code
              • undirected cyclic graph
              • directed cyclic graph
              • directed acyclic graph
              • rooted tree
              • Unique containing paths
              • Stress testing find_paths()
            • case study—Bacon Numbers from IMDb
              • Bacon numbers for synthetic data
              • Bacon numbers for IMDb data
        • Data types
          • Array
            • array[] constructor
            • Literals
              • Text typecasting and literals
              • Array of primitive values
              • Row
              • Array of rows
            • FOREACH loop (PL/pgSQL)
            • array of DOMAINs
            • Functions and operators
              • ANY and ALL
              • Array comparison
              • Array slice operator
              • Array concatenation
              • Array properties
              • array_agg(), unnest(), generate_subscripts()
              • array_fill()
              • array_position(), array_positions()
              • array_remove()
              • array_replace() / set value
              • array_to_string()
              • string_to_array()
          • Binary
          • Boolean
          • Character
          • Date and time
          • JSON
            • JSON literals
            • Primitive and compound data types
            • Code example conventions
            • Indexes and check constraints
            • Functions & operators
              • ::jsonb, ::json, ::text (typecast)
              • ->, ->>, #>, #>> (JSON subvalues)
              • - and #- (remove)
              • || (concatenation)
              • = (equality)
              • @> and <@ (containment)
              • ? and ?| and ?& (key or value existence)
              • array_to_json()
              • jsonb_agg()
              • jsonb_array_elements()
              • jsonb_array_elements_text()
              • jsonb_array_length()
              • jsonb_build_object()
              • jsonb_build_array()
              • jsonb_each()
              • jsonb_each_text()
              • jsonb_extract_path()
              • jsonb_extract_path_text() and json_extract_path_text()
              • jsonb_object()
              • jsonb_object_agg()
              • jsonb_object_keys()
              • jsonb_populate_record()
              • jsonb_populate_recordset()
              • jsonb_pretty()
              • jsonb_set() and jsonb_insert()
              • jsonb_strip_nulls()
              • jsonb_to_record()
              • jsonb_to_recordset()
              • jsonb_typeof()
              • row_to_json()
              • to_jsonb()
          • Money
          • Numeric
          • Serial
          • UUID
        • Functions and operators
          • Aggregate functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • grouping sets, rollup, cube
            • Per function signature and purpose
              • avg(), count(), max(), min(), sum()
              • array_agg(), string_agg(), jsonb_agg(), jsonb_object_agg()
              • bit_and(), bit_or(), bool_and(), bool_or()
              • variance(), var_pop(), var_samp(), stddev(), stddev_pop(), stddev_samp()
              • linear regression
                • covar_pop(), covar_samp(), corr()
                • regr_%()
              • mode(), percentile_disc(), percentile_cont()
              • rank(), dense_rank(), percent_rank(), cume_dist()
            • case study—percentile_cont() and the "68–95–99.7" rule
            • case study—linear regression on COVID data
              • Download the COVIDcast data
              • Ingest the COVIDcast data
                • Inspect the COVIDcast data
                • Copy the .csv files to staging tables
                • Check staged data conforms to the rules
                • Join the staged data into a single table
                • SQL scripts
                  • Create cr_staging_tables()
                  • Create cr_copy_from_scripts()
                  • Create assert_assumptions_ok()
                  • Create xform_to_covidcast_fb_survey_results()
                  • ingest-the-data.sql
              • Analyze the COVIDcast data
                • symptoms vs mask-wearing by day
                • Data for scatter-plot for 21-Oct-2020
                • Scatter-plot for 21-Oct-2020
                • SQL scripts
                  • analysis-queries.sql
                  • synthetic-data.sql
          • currval()
          • lastval()
          • nextval()
          • Window functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • Per function signature and purpose
              • row_number(), rank() and dense_rank()
              • percent_rank(), cume_dist() and ntile()
              • first_value(), nth_value(), last_value()
              • lag(), lead()
              • Tables for the code examples
                • table t1
                • table t2
                • table t3
                • table t4
            • case study—analyzing a normal distribution
              • Bucket allocation scheme
              • do_clean_start.sql
              • cr_show_t4.sql
              • cr_dp_views.sql
              • cr_int_views.sql
              • cr_pr_cd_equality_report.sql
              • cr_bucket_using_width_bucket.sql
              • cr_bucket_dedicated_code.sql
              • do_assert_bucket_ok
              • cr_histogram.sql
              • cr_do_ntile.sql
              • cr_do_percent_rank.sql
              • cr_do_cume_dist.sql
              • do_populate_results.sql
              • do_report_results.sql
              • do_compare_dp_results.sql
              • do_demo.sql
              • Reports
                • Histogram report
                • dp-results
                • compare-dp-results
                • int-results
        • Extensions
        • Keywords
        • Reserved names
      • YCQL
        • ALTER KEYSPACE
        • ALTER ROLE
        • ALTER TABLE
        • CREATE INDEX
        • CREATE KEYSPACE
        • CREATE ROLE
        • CREATE TABLE
        • CREATE TYPE
        • DROP INDEX
        • DROP KEYSPACE
        • DROP ROLE
        • DROP TABLE
        • DROP TYPE
        • GRANT PERMISSION
        • GRANT ROLE
        • REVOKE PERMISSION
        • REVOKE ROLE
        • USE
        • INSERT
        • SELECT
        • EXPLAIN
        • UPDATE
        • DELETE
        • TRANSACTION
        • TRUNCATE
        • Simple expressions
        • Subscripted expressions
        • Function call
        • Operators
        • BLOB
        • BOOLEAN
        • Collection
        • FROZEN
        • INET
        • Integer and counter
        • Non-integer
        • TEXT
        • DATE, TIME, and TIMESTAMP
        • UUID and TIMEUUID
        • JSONB
        • Date and time
        • BATCH
    • CLIs
      • yb-ctl
      • yb-docker-ctl
      • ysqlsh
      • ycqlsh
      • yb-admin
      • yb-ts-cli
      • ysql_dump
      • ysql_dumpall
    • Configuration
      • yb-tserver
      • yb-master
      • yugabyted
      • Default ports
    • Drivers
      • Client drivers for YSQL API
      • YugabyteDB JDBC Driver
      • Client drivers for YCQL
      • Spring Data YugabyteDB
    • Connectors
      • Kafka Connect YugabyteDB
    • Third party tools
      • DBeaver
      • DbSchema
      • pgAdmin
      • SQL Workbench/J
      • TablePlus
      • Visual Studio Code
    • Sample datasets
      • Chinook
      • Northwind
      • PgExercises
      • SportsDB
  • RELEASES
    • Releases
    • Releases overview
    • Release versioning
    • What's new
      • v2.5 (latest)
      • v2.4.0 (stable)
    • Earlier releases
      • v2.3.3
      • v2.3.2
      • v2.3.1
      • v2.3.0
      • v2.1.8
      • v2.1.6
      • v2.2.0
      • v2.1.5
      • v2.1.4
      • v2.1.3
      • v2.1.2
      • v2.1.1
      • v2.1.0
      • v2.0.11
      • v2.0.10
      • v2.0.9
      • v2.0.8
      • v2.0.7
      • v2.0.6
      • v2.0.5
      • v2.0.3
      • v2.0.1
      • v2.0.0
      • v1.3.1
      • v1.3.0
      • v1.2.12
      • v1.2.11
      • v1.2.10
      • v1.2.9
      • v1.2.8
      • v1.2.6
      • v1.2.5
      • v1.2.4
  • FAQ
    • Comparisons
      • Amazon Aurora
      • Google Cloud Spanner
      • CockroachDB
      • TiDB
      • Vitess
      • MongoDB
      • FoundationDB
      • Amazon DynamoDB
      • Azure Cosmos DB
      • Apache Cassandra
      • PostgreSQL
      • Redis in-memory store
      • Apache HBase
    • FAQs
      • General FAQ
      • Operations FAQ
      • API compatibility FAQ
      • Yugabyte Platform FAQ
  • MISC
    • YEDIS
      • Quick start
      • Develop
        • Build an application
        • C#
        • C++
        • Go
        • Java
        • NodeJS
        • Python
      • API reference
        • APPEND
        • AUTH
        • CONFIG
        • CREATEDB
        • DELETEDB
        • LISTDB
        • SELECT
        • DEL
        • ECHO
        • EXISTS
        • EXPIRE
        • EXPIREAT
        • FLUSHALL
        • FLUSHDB
        • GET
        • GETRANGE
        • GETSET
        • HDEL
        • HEXISTS
        • HGET
        • HGETALL
        • HINCRBY
        • HKEYS
        • HLEN
        • HMGET
        • HMSET
        • HSET
        • HSTRLEN
        • HVALS
        • INCR
        • INCRBY
        • KEYS
        • MONITOR
        • PEXPIRE
        • PEXPIREAT
        • PTTL
        • ROLE
        • SADD
        • SCARD
        • RENAME
        • SET
        • SETEX
        • PSETEX
        • SETRANGE
        • SISMEMBER
        • SMEMBERS
        • SREM
        • STRLEN
        • ZRANGE
        • TSADD
        • TSCARD
        • TSGET
        • TSLASTN
        • TSRANGEBYTIME
        • TSREM
        • TSREVRANGEBYTIME
        • TTL
        • ZADD
        • ZCARD
        • ZRANGEBYSCORE
        • ZREM
        • ZREVRANGE
        • ZSCORE
        • PUBSUB
        • PUBLISH
        • SUBSCRIBE
        • UNSUBSCRIBE
        • PSUBSCRIBE
        • PUNSUBSCRIBE
    • Legal
      • Third party software
> Explore features > YSQL vs PostgreSQL >

Data Types

  • Strings
  • Numeric Types
  • SERIAL pseudo-type
  • Date and time
  • Arrays
    • 1. Create a table with an array type
    • 2. Insert rows
    • 3. Accessing arrays
    • 4. Updating a single element
    • 5. Updating entire array
    • 6. Searching in arrays
  • Enumerations - ENUM type
    • 1. Create ENUM
    • 2. Viewing the ENUM
    • 2. Create table with ENUM column
    • 3. Insert row with ENUM
  • Composite types
    • 1. Create a composite type
    • 2. Create table with composite type
    • 3. Insert a row
    • 4. Selecting data

This section covers the data types supported in YSQL, from the basic data types to the SERIAL pseudo-type (for implementing an auto-incrementing primary key column in a table), arrays and composite types. The JSONB document data type is covered in a separate section.

Strings

The following character types are supported.

  • varchar(n): variable-length string
  • char(n): fixed-length, blank padded
  • text, varchar: variable unlimited length

To test YugabyteDB’s support for character types, let’s create a table that has columns with these types specified:

CREATE TABLE char_types (
    id serial PRIMARY KEY,
    a CHAR (4),
    b VARCHAR (16),
    c TEXT
);

Insert some rows:

INSERT INTO char_types (a, b, c) VALUES (
  'foo', 'bar', 'Data for the text column'
);

Numeric Types

The following numeric types are supported

  • SMALLINT: a 2-byte signed integer that has a range from -32,768 to 32,767.
  • INT: a 4-byte integer that has a range from -2,147,483,648 to 2,147,483,647.
  • float(n): is a floating-point number whose precision is at least, n, up to a maximum of 8 bytes
  • real: is a 4-byte floating-point number
  • numeric or numeric(p,s): is a real number with p digits with s number after the decimal point. The numeric(p,s) is the exact number

Below is an example of creating a table with integer type columns and inserting rows into it:

CREATE TABLE albums (
    album_id SERIAL PRIMARY KEY,
    title VARCHAR (255) NOT NULL,
    play_time SMALLINT NOT NULL,
    library_record INT NOT NULL
);

INSERT INTO albums
values (default,'Funhouse', 3600,2146483645 ),
(default,'Darkside of the Moon', 4200, 214648348);

Similarly, the example below shows how to create a table with floating-point typed columns and how to insert a row into that table.

CREATE TABLE floating_point_test (
    floatn_test float8 not NULL,
    real_test real NOT NULL,
    numeric_test NUMERIC (3, 2)
);

INSERT INTO floating_point_test (floatn_test, real_test, numeric_test)
VALUES
    (9223372036854775807, 2147483647, 5.36), 
    (9223372036854775800, 2147483640, 9.99);

SERIAL pseudo-type

In YugabyteDB, just as with PostgreSQL, a sequence is a special kind of database object that generates a sequence of integers. A sequence is often used as the primary key column in a table.

By assigning the SERIAL pseudo-type to a column, the following occurs behind the scenes:

  1. The database creates a sequence object and sets the next value generated by the sequence as the default value for the column.
  2. The database adds a NOT NULL constraint to that column because a sequence always generates an integer, which is a non-null value.
  3. The SERIAL column is assigned as the owner of the sequence. This results in the sequence object being deleted when the SERIAL column or table is dropped.

YSQL supports the following pseudo-types:

  • SMALLSERIAL: 2 bytes (1 to 32,767)
  • SERIAL: 4 bytes (1 to 2,147,483,647)
  • BIGSERIAL: 8 bytes (1 to 9,223,372,036,854,775,807)

Date and time

Temporal data types allow us to store date and/or time data. There are five main types in PostgreSQL, all of which are supported in YugabyteDB.

  • DATE: stores the dates only
  • TIME: stores the time of day values
  • TIMESTAMP: stores both date and time values
  • TIMESTAMPTZ: is a timezone-aware timestamp data type
  • INTERVAL: stores intervals of time

Let's create a table with these temporal types as shown below.

CREATE TABLE temporal_types (
  date_type DATE,
  time_type TIME,
  timestamp_type TIMESTAMP,
  timestampz_type TIMESTAMPTZ,
  interval_type INTERVAL
);

Next, let's insert a row into this table.

INSERT INTO temporal_types (
  date_type, time_type, timestamp_type, timestampz_type, interval_type)
VALUES
  ('2000-06-28', '06:23:00', '2016-06-22 19:10:25-07', 
   '2016-06-22 19:10:25-07', '1 year'),
  ('2010-06-28', '12:32:12','2016-06-22 19:10:25-07', 
   '2016-06-22 19:10:25-07', '10 years 3 months 5 days');

You can check the data inserted as shown below.

yugabyte=# select * from temporal_types;
 date_type  | time_type |   timestamp_type    |    timestampz_type     |     interval_type
------------+-----------+---------------------+------------------------+------------------------
 2010-06-28 | 12:32:12  | 2016-06-22 19:10:25 | 2016-06-22 19:10:25-07 | 10 years 3 mons 5 days
 2000-06-28 | 06:23:00  | 2016-06-22 19:10:25 | 2016-06-22 19:10:25-07 | 1 year
(2 rows)

Arrays

YSQL supports arrays to hold data of variable length. The type of the data stored in an array can be an inbuilt type, a user-defined type or an enumerated type. The examples below are adapted from here.

1. Create a table with an array type

CREATE TABLE rock_band (
   name text,
   members text[]
);

2. Insert rows

You can insert a row into this table as shown below. Note that the array literals must be double-quoted.

INSERT INTO rock_band VALUES (
  'Led Zeppelin', '{"Page", "Plant", "Jones", "Bonham"}'
);

An alternate syntax using the array constructor is shown below. When using the ARRAY constructor, the values must be single-quoted.

INSERT INTO rock_band VALUES (
  'Pink Floyd', ARRAY['Barrett', 'Gilmour']
);

3. Accessing arrays

You can query the table as shown below.

select * from rock_band;

Output:

     name     |          members
--------------+---------------------------
 Pink Floyd   | {Barrett,Gilmour}
 Led Zeppelin | {Page,Plant,Jones,Bonham}
(2 rows)

Array values can be accessed using subscripts.

select name from rock_band where members[2] = 'Plant';

Output:

     name
--------------
 Led Zeppelin
(1 row)

They can also be accessed using slices as shown below.

select members[1:2] from rock_band;

Output:

      members
-------------------
 {Barrett,Gilmour}
 {Page,Plant}
(2 rows)

4. Updating a single element

UPDATE rock_band set members[2] = 'Waters' where name = 'Pink Floyd';

Output:

yugabyte=# select * from rock_band where name = 'Pink Floyd';
    name    |     members
------------+------------------
 Pink Floyd | {Barrett,Waters}
(1 row)

5. Updating entire array

UPDATE rock_band set members = '{"Mason", "Wright", "Gilmour"}' where name = 'Pink Floyd';

Output:

yugabyte=# select * from rock_band where name = 'Pink Floyd';
    name    |        members
------------+------------------------
 Pink Floyd | {Mason,Wright,Gilmour}
(1 row)

6. Searching in arrays

Use the ANY keyword to search for a particular value in an array as shown below.

select name from rock_band where 'Mason' = ANY(members);

Output:

    name
------------
 Pink Floyd
(1 row)

Enumerations - ENUM type

YugabyteDB supports the ENUM type in PostgreSQL. Below is an example (adapted from here).

1. Create ENUM

CREATE TYPE e_contact_method AS ENUM (
  'Email', 
  'Sms', 
  'Phone');

2. Viewing the ENUM

To view the list of values across all ENUM types, run:

select t.typname, e.enumlabel 
  from pg_type t, pg_enum e 
  where t.oid = e.enumtypid;

The output should be as follows:

     typname      | enumlabel
------------------+-----------
 e_contact_method | Email
 e_contact_method | Sms
 e_contact_method | Phone

2. Create table with ENUM column

CREATE TABLE contact_method_info (
   contact_name text,
   contact_method e_contact_method,
   value text
);

3. Insert row with ENUM

Inserting a row with a valid value for the ENUM should succeed.

INSERT INTO contact_method_info VALUES ('Jeff', 'Email', '[email protected]')

You can verify as shown below:

yugabyte=# select * from contact_method_info;
 contact_name | contact_method |     value
--------------+----------------+---------------
 Jeff         | Email          | [email protected]
(1 row)

Inserting an invalid ENUM value would fail.

yugabyte=# INSERT INTO contact_method_info VALUES ('Jeff', 'Fax', '4563456');

You should see the following error (note error message is compatible with that of PostgreSQL).

ERROR:  22P02: invalid input value for enum e_contact_method: "Fax"
LINE 1: INSERT INTO contact_method_info VALUES ('Jeff', 'Fax', '4563...

Composite types

A composite type (also known as a user defined type) is a collection of data types similar to a struct in a programming language. The examples in this section are adapted from here.

1. Create a composite type

CREATE TYPE inventory_item AS (
   name text,
   supplier_id integer,
   price numeric
);

2. Create table with composite type

This can be done as shown below.

CREATE TABLE on_hand (
   item inventory_item,
   count integer
);

3. Insert a row

To insert a row, use the RUN keyword, as shown below.

INSERT INTO on_hand VALUES (ROW('fuzzy dice', 42, 1.99), 1000);

4. Selecting data

To select some subfields from our on_hand example table, run the query shown below.

SELECT (item).name FROM on_hand WHERE (item).price > 0.99;

You can also use the table names as shown below.

SELECT (on_hand.item).name FROM on_hand WHERE (on_hand.item).price > 0.99;

Output:

yugabyte=# SELECT (item).name FROM on_hand WHERE (item).price > 0.99;
    name
------------
 fuzzy dice
(1 row)
  • Strings
  • Numeric Types
  • SERIAL pseudo-type
  • Date and time
  • Arrays
    • 1. Create a table with an array type
    • 2. Insert rows
    • 3. Accessing arrays
    • 4. Updating a single element
    • 5. Updating entire array
    • 6. Searching in arrays
  • Enumerations - ENUM type
    • 1. Create ENUM
    • 2. Viewing the ENUM
    • 2. Create table with ENUM column
    • 3. Insert row with ENUM
  • Composite types
    • 1. Create a composite type
    • 2. Create table with composite type
    • 3. Insert a row
    • 4. Selecting data
Ask our community
  • Slack
  • Github
  • Forum
  • StackOverflow
Yugabyte
Contact Us
Copyright © 2017-2020 Yugabyte, Inc. All rights reserved.