Join us on YugabyteDB Community Slack
Star us on
Get Started
Slack
GitHub
Get Started
v2.13 (preview) v2.12 (stable) v2.8 (earlier version) v2.6 (earlier version) v2.4 (earlier version) Unsupported versions
  • YUGABYTEDB CORE
    • Quick start
      • 1. Install YugabyteDB
      • 2. Create a local cluster
      • 3. Explore distributed SQL
      • 4. Build an application
        • Java
        • Node.js
        • Go
        • Python
        • Ruby
        • C#
        • PHP
        • C++
        • C
        • Scala
        • Rust
    • Explore
      • SQL features
        • SQL Feature Support
        • PostgreSQL Compatibility
        • Foreign Data Wrappers
        • Schemas and Tables
        • Data Types
        • Data Manipulation
        • Queries and Joins
        • Expressions and Operators
        • Stored Procedures
        • Triggers
        • Advanced features
          • Cursors
          • Table Partitioning
          • Views
          • Savepoints
          • Collations
        • Going beyond SQL
          • Follower reads
          • Tablespaces
        • PostgreSQL extensions
      • Fault tolerance
      • Horizontal scalability
        • Scaling Transactions
        • Sharding Data
      • Transactions
        • Distributed Transactions
        • Isolation Levels
        • Explicit Locking
      • Indexes and Constraints
        • Primary keys
        • Foreign keys
        • Secondary indexes
        • Unique indexes
        • Partial indexes
        • Expression indexes
        • Covering indexes
        • GIN indexes
        • Other constraints
      • JSON support
      • Multi-region deployments
        • Sync replication (3+ regions)
        • Async Replication (2+ regions)
        • Row-Level Geo-Partitioning
        • Read replicas
      • Query tuning
        • Introduction
        • Get query statistics using pg_stat_statements
        • Viewing live queries with pg_stat_activity
        • Analyzing queries with EXPLAIN
        • Optimizing YSQL queries using pg_hint_plan
      • Cluster management
        • Point-in-time recovery
      • Change data capture (CDC)
        • Debezium connector
        • Java CDC console
      • Security
      • Observability
        • Prometheus Integration
        • Grafana Dashboard
    • Drivers and ORMs
      • Java
        • JDBC drivers
        • Hibernate ORM
        • Supported versions
      • Go
        • Go drivers
        • Go ORMs
        • Supported versions
      • C#
        • C# drivers
        • C# ORMs
        • Supported versions
      • NodeJS
        • NodeJS drivers
        • NodeJS ORMs
        • Supported Versions
      • Python
        • Python drivers
        • Python ORMs
        • Supported versions
      • Rust
        • Diesel ORM
    • Develop
      • Learn app development
        • 1. SQL vs NoSQL
        • 2. Data modeling
        • 3. Data types
        • 4. ACID transactions
        • 5. Aggregations
        • 6. Batch operations
        • 7. Date and time
        • 8. Strings and text
        • 9. TTL for data expiration
      • Real-world examples
        • E-Commerce app
        • IoT fleet management
      • Explore sample apps
      • Best practices
      • Cloud-native development
        • Codespaces
        • Gitpod
    • Migrate
      • Migration process overview
      • Migrate from PostgreSQL
        • Convert a PostgreSQL schema
        • Migrate a PostgreSQL application
        • Export PostgreSQL data
        • Prepare a cluster
        • Import PostgreSQL data
        • Verify Migration
    • Deploy
      • Deployment checklist
      • Manual deployment
        • 1. System configuration
        • 2. Install software
        • 3. Start YB-Masters
        • 4. Start YB-TServers
        • 5. Verify deployment
      • Kubernetes
        • Single-zone
          • Open Source
          • Amazon EKS
          • Google Kubernetes Engine
          • Azure Kubernetes Service
        • Multi-zone
          • Amazon EKS
          • Google Kubernetes Engine
        • Multi-cluster
          • Google Kubernetes Engine
        • Best practices
        • Connect Clients
      • Docker
      • Public clouds
        • Amazon Web Services
        • Google Cloud Platform
        • Microsoft Azure
      • Multi-DC deployments
        • Three+ data center (3DC)
        • Asynchronous Replication
        • Read replica clusters
    • Benchmark
      • TPC-C
      • sysbench
      • YCSB
      • Key-value workload
      • Large datasets
      • Scalability
        • Scaling queries
      • Resilience
        • Jepsen testing
      • Performance Troubleshooting
    • Secure
      • Security checklist
      • Enable authentication
        • Enable users
        • Configure client authentication
      • Authentication methods
        • Password authentication
        • LDAP authentication
        • Host-based authentication
        • Trust authentication
      • Role-based access control
        • Overview
        • Manage users and roles
        • Grant privileges
        • Row-level security
        • Column-level security
      • Encryption in transit
        • Create server certificates
        • Enable server-to-server encryption
        • Enable client-to-server encryption
        • Connect to clusters
        • TLS and authentication
      • Encryption at rest
      • Column-level encryption
      • Audit logging
        • Configure audit logging
        • Session-Level Audit Logging
        • Object-Level Audit Logging
      • Vulnerability disclosure policy
    • Manage
      • Back up and restore
        • Export and import data
        • Snapshot and restore data
        • Point-in-time recovery
      • Migrate data
        • Bulk import
        • Bulk export
      • Change cluster configuration
      • Diagnostics reporting
      • Upgrade a deployment
      • Grow cluster
    • Troubleshoot
      • Troubleshooting
      • Cluster level issues
        • YCQL connection issues
        • YEDIS connection Issues
        • Recover tserver/master
        • Replace a failed YB-TServer
        • Replace a failed YB-Master
        • Manual remote bootstrap when a majority of peers fail
      • Node level issues
        • Check servers
        • Inspect logs
        • System statistics
        • Disk failure
        • Common error messages
    • Contribute
      • Core database
        • Contribution checklist
        • Build the source
        • Configure a CLion project
        • Run the tests
        • Coding style
      • Documentation
        • Docs checklist
        • Docs layout
        • Build the docs
          • Editor setup
        • Edit the docs
          • Docs page structure
          • Syntax diagrams
        • Style guide
  • YUGABYTEDB ANYWHERE
    • Overview
      • Install
      • Configure
    • Install
      • Prerequisites
      • Prepare the environment
      • Install software
      • Prepare nodes
      • Uninstall software
    • Configure
      • Create admin user
      • Configure cloud providers
      • Configure backup target
      • Configure alerts
    • Create deployments
      • Multi-zone universe
      • Multi-region universe
      • Multi-cloud universe
      • Read replica cluster
      • Asynchronous replication
    • Manage deployments
      • Start and stop processes
      • Eliminate an unresponsive node
      • Recover a node
      • Enable high availability
      • Edit configuration flags
      • Edit a universe
      • Delete a universe
      • Configure instance tags
      • Upgrade YugabyteDB
      • Migrate to Helm 3
    • Back up universes
      • Configure backup storage
      • Back up universe data
      • Restore universe data
      • Schedule data backups
    • Security
      • Security checklist
      • Configure ports
      • LDAP authentication
      • Authorization
      • Create a KMS configuration
      • Enable encryption at rest
      • Enable encryption in transit
      • Network security
    • Alerts and monitoring
      • Alerts
      • Live Queries dashboard
      • Slow Queries dashboard
    • Troubleshoot
      • Install and upgrade issues
      • Universe issues
    • Administer
      • Back up YugabyteDB Anywhere
      • Authenticate with LDAP
    • Upgrade
      • Upgrade Kubernetes installation
      • Upgrade using Replicated
  • YUGABYTEDB MANAGED
    • Overview
    • Quick start
      • Create a free cluster
      • Connect to the cluster
      • Explore distributed SQL
      • Build an application
        • Before you begin
        • Java
        • Go
        • Python
        • Node.js
        • C
        • C++
        • C#
        • Ruby
        • Rust
        • PHP
    • Deploy clusters
      • Planning a cluster
      • Create a free cluster
      • Create a standard cluster
      • VPC network
        • Overview
        • VPCs
        • Peering connections
        • Create a VPC Network
    • Secure clusters
      • IP allow lists
      • Database authorization
      • Add database users
      • Encryption in transit
      • Audit account activity
    • Connect to clusters
      • Cloud Shell
      • Client shell
      • Connect applications
    • Alerts and monitoring
      • Alerts
      • Performance metrics
      • Live queries
      • Slow YSQL queries
      • Cluster activity
    • Manage clusters
      • Scale and configure clusters
      • Backup and restore
      • Maintenance windows
      • Create extensions
    • Administration and billing
      • Manage account access
      • Manage billing
      • Cluster costs
    • Example applications
      • Connect a Spring application
      • Connect a YCQL Java application
      • Hasura Cloud
      • Deploy a GraphQL application
    • Security architecture
      • Security architecture
      • Shared responsibility model
    • Troubleshoot
    • YugabyteDB Managed FAQ
    • What's new
  • INTEGRATIONS
    • Apache Kafka
    • Apache Spark
    • Debezium
    • Django REST framework
    • Entity Framework
    • Flyway
    • GORM
    • Hasura
      • Application Development
      • Benchmarking
    • JanusGraph
    • KairosDB
    • Liquibase
    • Metabase
    • Presto
    • Prisma
    • Sequelize
    • Spring Framework
      • Spring Data YugabyteDB
      • Spring Data JPA
      • Spring Data Cassandra
    • SQLAlchemy
    • WSO2 Identity Server
    • YSQL Loader
    • YugabyteDB JDBC driver
  • REFERENCE
    • Architecture
      • Design goals
      • Key concepts
        • Universe
        • YB-TServer Service
        • YB-Master Service
      • Core functions
        • Universe creation
        • Table creation
        • Write IO path
        • Read IO path
        • High availability
      • Layered architecture
      • Query layer
        • Overview
      • DocDB transactions layer
        • Transactions overview
        • Transaction isolation levels
        • Explicit locking
        • Read Committed
        • Single-row transactions
        • Distributed transactions
        • Transactional IO path
      • DocDB sharding layer
        • Hash & range sharding
        • Tablet splitting
        • Colocated tables
      • DocDB replication layer
        • Replication
        • xCluster replication
        • Read replicas
        • Change data capture (CDC)
      • DocDB storage layer
        • Persistence
        • Performance
    • APIs
      • YSQL
        • The SQL language
          • SQL statements
            • ABORT
            • ALTER DATABASE
            • ALTER DEFAULT PRIVILEGES
            • ALTER DOMAIN
            • ALTER FOREIGN DATA WRAPPER
            • ALTER FOREIGN TABLE
            • ALTER GROUP
            • ALTER POLICY
            • ALTER ROLE
            • ALTER SEQUENCE
            • ALTER SERVER
            • ALTER TABLE
            • ALTER USER
            • ANALYZE
            • BEGIN
            • CALL
            • COMMENT
            • COMMIT
            • COPY
            • CREATE AGGREGATE
            • CREATE CAST
            • CREATE DATABASE
            • CREATE DOMAIN
            • CREATE EXTENSION
            • CREATE FOREIGN DATA WRAPPER
            • CREATE FOREIGN TABLE
            • CREATE FUNCTION
            • CREATE GROUP
            • CREATE INDEX
            • CREATE MATERIALIZED VIEW
            • CREATE OPERATOR
            • CREATE OPERATOR CLASS
            • CREATE POLICY
            • CREATE PROCEDURE
            • CREATE ROLE
            • CREATE RULE
            • CREATE SCHEMA
            • CREATE SEQUENCE
            • CREATE SERVER
            • CREATE TABLE
            • CREATE TABLE AS
            • CREATE TRIGGER
            • CREATE TYPE
            • CREATE USER
            • CREATE USER MAPPING
            • CREATE VIEW
            • DEALLOCATE
            • DELETE
            • DO
            • DROP AGGREGATE
            • DROP CAST
            • DROP DATABASE
            • DROP DOMAIN
            • DROP EXTENSION
            • DROP FOREIGN DATA WRAPPER
            • DROP FOREIGN TABLE
            • DROP FUNCTION
            • DROP GROUP
            • DROP MATERIALIZED VIEW
            • DROP OPERATOR
            • DROP OPERATOR CLASS
            • DROP OWNED
            • DROP POLICY
            • DROP PROCEDURE
            • DROP ROLE
            • DROP RULE
            • DROP SEQUENCE
            • DROP SERVER
            • DROP TABLE
            • DROP TRIGGER
            • DROP TYPE
            • DROP USER
            • END
            • EXECUTE
            • EXPLAIN
            • GRANT
            • IMPORT FOREIGN SCHEMA
            • INSERT
            • LOCK
            • PREPARE
            • REASSIGN OWNED
            • REFRESH MATERIALIZED VIEW
            • RELEASE SAVEPOINT
            • RESET
            • REVOKE
            • ROLLBACK
            • ROLLBACK TO SAVEPOINT
            • SAVEPOINT
            • SELECT
            • SET
            • SET CONSTRAINTS
            • SET ROLE
            • SET SESSION AUTHORIZATION
            • SET TRANSACTION
            • SHOW
            • SHOW TRANSACTION
            • TRUNCATE
            • UPDATE
            • VALUES
          • WITH clause
            • WITH clause—SQL syntax and semantics
            • recursive CTE
            • case study—traversing an employee hierarchy
            • traversing general graphs
              • graph representation
              • common code
              • undirected cyclic graph
              • directed cyclic graph
              • directed acyclic graph
              • rooted tree
              • Unique containing paths
              • Stress testing find_paths()
            • case study—Bacon Numbers from IMDb
              • Bacon numbers for synthetic data
              • Bacon numbers for IMDb data
        • Data types
          • Array
            • array[] constructor
            • Literals
              • Text typecasting and literals
              • Array of primitive values
              • Row
              • Array of rows
            • FOREACH loop (PL/pgSQL)
            • array of DOMAINs
            • Functions and operators
              • ANY and ALL
              • Array comparison
              • Array slice operator
              • Array concatenation
              • Array properties
              • array_agg(), unnest(), generate_subscripts()
              • array_fill()
              • array_position(), array_positions()
              • array_remove()
              • array_replace() / set value
              • array_to_string()
              • string_to_array()
          • Binary
          • Boolean
          • Character
          • Date and time
            • Conceptual background
            • Timezones and UTC offsets
              • Catalog views
              • Extended_timezone_names
                • Unrestricted full projection
                • Real timezones with DST
                • Real timezones no DST
                • Synthetic timezones no DST
              • Offset/timezone-sensitive operations
                • Timestamptz to/from timestamp conversion
                • Pure 'day' interval arithmetic
              • Four ways to specify offset
                • Name-resolution rules
                  • 1 case-insensitive resolution
                  • 2 ~names.abbrev never searched
                  • 3 'set timezone' string not resolved in ~abbrevs.abbrev
                  • 4 ~abbrevs.abbrev before ~names.name
                  • Helper functions
              • Syntax contexts for offset
              • Recommended practice
            • Typecasting between date-time and text-values
            • Semantics of the date-time data types
              • Date data type
              • Time data type
              • Plain timestamp and timestamptz
              • Interval data type
                • Interval representation
                  • Ad hoc examples
                  • Representation model
                • Interval value limits
                • Declaring intervals
                • Justify() and extract(epoch...)
                • Interval arithmetic
                  • Interval-interval comparison
                  • Interval-interval addition and subtraction
                  • Interval-number multiplication
                  • Moment-moment overloads of "-"
                  • Moment-interval overloads of "+" and "-"
                • Custom interval domains
                • Interval utility functions
            • Typecasting between date-time datatypes
            • Operators
              • Test comparison overloads
              • Test addition overloads
              • Test subtraction overloads
              • Test multiplication overloads
              • Test division overloads
            • General-purpose functions
              • Creating date-time values
              • Manipulating date-time values
              • Current date-time moment
              • Delaying execution
              • Miscellaneous
                • Function age()
                • Function extract() | date_part()
                • Implementations that model the overlaps operator
            • Formatting functions
            • Case study—SQL stopwatch
            • Download & install the date-time utilities
            • ToC
          • JSON
            • JSON literals
            • Primitive and compound data types
            • Code example conventions
            • Indexes and check constraints
            • Functions & operators
              • ::jsonb, ::json, ::text (typecast)
              • ->, ->>, #>, #>> (JSON subvalues)
              • - and #- (remove)
              • || (concatenation)
              • = (equality)
              • @> and <@ (containment)
              • ? and ?| and ?& (key or value existence)
              • array_to_json()
              • jsonb_agg()
              • jsonb_array_elements()
              • jsonb_array_elements_text()
              • jsonb_array_length()
              • jsonb_build_object()
              • jsonb_build_array()
              • jsonb_each()
              • jsonb_each_text()
              • jsonb_extract_path()
              • jsonb_extract_path_text() and json_extract_path_text()
              • jsonb_object()
              • jsonb_object_agg()
              • jsonb_object_keys()
              • jsonb_populate_record()
              • jsonb_populate_recordset()
              • jsonb_pretty()
              • jsonb_set() and jsonb_insert()
              • jsonb_strip_nulls()
              • jsonb_to_record()
              • jsonb_to_recordset()
              • jsonb_typeof()
              • row_to_json()
              • to_jsonb()
          • Money
          • Numeric
          • Range
          • Serial
          • UUID
        • Functions and operators
          • Aggregate functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • grouping sets, rollup, cube
            • Per function signature and purpose
              • avg(), count(), max(), min(), sum()
              • array_agg(), string_agg(), jsonb_agg(), jsonb_object_agg()
              • bit_and(), bit_or(), bool_and(), bool_or()
              • variance(), var_pop(), var_samp(), stddev(), stddev_pop(), stddev_samp()
              • linear regression
                • covar_pop(), covar_samp(), corr()
                • regr_%()
              • mode(), percentile_disc(), percentile_cont()
              • rank(), dense_rank(), percent_rank(), cume_dist()
            • case study—percentile_cont() and the "68–95–99.7" rule
            • case study—linear regression on COVID data
              • Download the COVIDcast data
              • Ingest the COVIDcast data
                • Inspect the COVIDcast data
                • Copy the .csv files to staging tables
                • Check staged data conforms to the rules
                • Join the staged data into a single table
                • SQL scripts
                  • Create cr_staging_tables()
                  • Create cr_copy_from_scripts()
                  • Create assert_assumptions_ok()
                  • Create xform_to_covidcast_fb_survey_results()
                  • ingest-the-data.sql
              • Analyze the COVIDcast data
                • symptoms vs mask-wearing by day
                • Data for scatter-plot for 21-Oct-2020
                • Scatter-plot for 21-Oct-2020
                • SQL scripts
                  • analysis-queries.sql
                  • synthetic-data.sql
          • currval()
          • lastval()
          • nextval()
          • Window functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • Per function signature and purpose
              • row_number(), rank() and dense_rank()
              • percent_rank(), cume_dist() and ntile()
              • first_value(), nth_value(), last_value()
              • lag(), lead()
              • Tables for the code examples
                • table t1
                • table t2
                • table t3
                • table t4
            • case study—analyzing a normal distribution
              • Bucket allocation scheme
              • do_clean_start.sql
              • cr_show_t4.sql
              • cr_dp_views.sql
              • cr_int_views.sql
              • cr_pr_cd_equality_report.sql
              • cr_bucket_using_width_bucket.sql
              • cr_bucket_dedicated_code.sql
              • do_assert_bucket_ok
              • cr_histogram.sql
              • cr_do_ntile.sql
              • cr_do_percent_rank.sql
              • cr_do_cume_dist.sql
              • do_populate_results.sql
              • do_report_results.sql
              • do_compare_dp_results.sql
              • do_demo.sql
              • Reports
                • Histogram report
                • dp-results
                • compare-dp-results
                • int-results
          • yb_hash_code()
        • Keywords
        • Reserved names
      • YCQL
        • ALTER KEYSPACE
        • ALTER ROLE
        • ALTER TABLE
        • CREATE INDEX
        • CREATE KEYSPACE
        • CREATE ROLE
        • CREATE TABLE
        • CREATE TYPE
        • DROP INDEX
        • DROP KEYSPACE
        • DROP ROLE
        • DROP TABLE
        • DROP TYPE
        • GRANT PERMISSION
        • GRANT ROLE
        • REVOKE PERMISSION
        • REVOKE ROLE
        • USE
        • INSERT
        • SELECT
        • EXPLAIN
        • UPDATE
        • DELETE
        • TRANSACTION
        • TRUNCATE
        • Simple expressions
        • Subscripted expressions
        • Function call
        • Operators
        • BLOB
        • BOOLEAN
        • Collection
        • FROZEN
        • INET
        • Integer and counter
        • Non-integer
        • TEXT
        • DATE, TIME, and TIMESTAMP
        • UUID and TIMEUUID
        • JSONB
        • Date and time
        • BATCH
    • CLIs
      • yb-ctl
      • yb-docker-ctl
      • ysqlsh
      • ycqlsh
      • yb-admin
      • yb-ts-cli
      • ysql_dump
      • ysql_dumpall
    • Configuration
      • yb-tserver
      • yb-master
      • yugabyted
      • Default ports
    • Drivers and ORMs
      • JDBC Drivers
      • C# Drivers
      • Go Drivers
      • Python Drivers
      • Client drivers for YSQL
      • Client drivers for YCQL
    • Connectors
      • Kafka Connect YugabyteDB
    • Third party tools
      • pgAdmin
      • Apache Superset
      • Arctype
      • DBeaver
      • TablePlus
      • DbSchema
      • SQL Workbench/J
      • Cassandra Workbench
    • Sample datasets
      • Chinook
      • Northwind
      • PgExercises
      • SportsDB
      • Retail Analytics
  • RELEASES
    • Releases overview
      • v2.13 series (preview)
      • v2.12 series (stable)
      • v2.11 series
      • v2.9 series
      • v2.8 series
      • v2.7 series
      • v2.6 series
      • v2.5 series
      • v2.4 series
      • v2.3 series
      • v2.2 series
      • v2.1 series
      • v2.0 series
      • v1.3 series
      • v1.2 series
    • Release versioning
  • FAQ
    • Comparisons
      • Amazon Aurora
      • Google Cloud Spanner
      • CockroachDB
      • TiDB
      • Vitess
      • MongoDB
      • FoundationDB
      • Amazon DynamoDB
      • Azure Cosmos DB
      • Apache Cassandra
      • PostgreSQL
      • Redis in-memory store
      • Apache HBase
    • General FAQ
    • Operations FAQ
    • API compatibility FAQ
    • YugabyteDB Anywhere FAQ
  • MISC
    • YEDIS
      • Quick start
      • Develop
        • Build an application
        • C#
        • C++
        • Go
        • Java
        • NodeJS
        • Python
      • API reference
        • APPEND
        • AUTH
        • CONFIG
        • CREATEDB
        • DELETEDB
        • LISTDB
        • SELECT
        • DEL
        • ECHO
        • EXISTS
        • EXPIRE
        • EXPIREAT
        • FLUSHALL
        • FLUSHDB
        • GET
        • GETRANGE
        • GETSET
        • HDEL
        • HEXISTS
        • HGET
        • HGETALL
        • HINCRBY
        • HKEYS
        • HLEN
        • HMGET
        • HMSET
        • HSET
        • HSTRLEN
        • HVALS
        • INCR
        • INCRBY
        • KEYS
        • MONITOR
        • PEXPIRE
        • PEXPIREAT
        • PTTL
        • ROLE
        • SADD
        • SCARD
        • RENAME
        • SET
        • SETEX
        • PSETEX
        • SETRANGE
        • SISMEMBER
        • SMEMBERS
        • SREM
        • STRLEN
        • ZRANGE
        • TSADD
        • TSCARD
        • TSGET
        • TSLASTN
        • TSRANGEBYTIME
        • TSREM
        • TSREVRANGEBYTIME
        • TTL
        • ZADD
        • ZCARD
        • ZRANGEBYSCORE
        • ZREM
        • ZREVRANGE
        • ZSCORE
        • PUBSUB
        • PUBLISH
        • SUBSCRIBE
        • UNSUBSCRIBE
        • PSUBSCRIBE
        • PUNSUBSCRIBE
    • Legal
      • Third party software
> Explore > SQL features > Advanced features >

Table Partitioning

Report a doc issue Suggest new content Contributor guide
  • Overview
  • Declarative Table Partitioning
  • Partition pruning and constraint exclusion

This section describes how to partition tables in YugabyteDB using YSQL.

Overview

Partitioning is another term for physically dividing large tables in YugabyteDB into smaller, more manageable tables to improve performance. Typically, tables with columns containing timestamps are subject to partitioning because of the historical and predictable nature of their data.

Since partitioned tables do not appear nor act differently from the original table, applications accessing the database are not always aware of the fact that partitioning has taken place.

YSQL supports the following types of partitioning:

  • Range partitioning, when a table is partitioned into ranges defined by one or more key columns. In this case, the ranges of values assigned to partitions do not overlap.
  • List partitioning, when a table is partitioned via listing key values to appear in each partition.
  • Hash partitioning, when a table is partitioned by specifying a modulus and remainder for each partition.

For supplementary information on partitioning, see Row-Level Geo-Partitioning.

Declarative Table Partitioning

YSQL allows you to specify how exactly to divide a table. You provide a partitioning method and partition key consisting of a list of columns or expressions. The divided table is called a partitioned table, and the resulting tables are called partitions. When you insert rows into a partitioned table, they are redirected to a partition depending on the value of the partition key. You can also directly insert rows into the partition table itself, and those rows can be fetched by querying the parent table.

You can nest partitions, in which case they would have their own distinct indexes, constraints, and default values.

A regular table cannot become a partitioned table, just as a partitioned table cannot become a regular table. That said, YSQL allows attaching a regular table (provided it has the same schema as that of the partitioned table) as a partition to the partitioned table. Conversely, a partition can be detached from the partitioned table, in which case it can behave as a regular table that is not part of the partitioning hierarchy. A partitioned table and its partitions have hierarchical structure and are subject to most of its rules.

Suppose you work with a database that includes the following table:

CREATE TABLE order_changes (
  change_date date,
  type text,
  description text
);

change_date represents the date when any type of change occurred on the order record. This date might be required when generating monthly reports. Assuming that typically only the last month's data is queried often, then the data older than one year is removed from the table every month. To simplify this process, you can partition the order_changes table. You start by specifying bounds corresponding to the partitioning method and partition key of the order_changes table. This means you create partitions as regular tables and YSQL generates partition constraints automatically based on the partition bound specification every time they have to be referenced.

You can declare partitioning on a table by creating it as a partitioned table: you specify the PARTITION BY clause which you supply with the partitioning method, such as RANGE, and a list of columns as a partition key, as shown in the following example:

CREATE TABLE order_changes (
  change_date date,
  type text,
  description text
)
PARTITION BY RANGE (change_date);

You create the actual partitions as follows:

CREATE TABLE order_changes_2019_02 PARTITION OF order_changes
  FOR VALUES FROM ('2019-02-01') TO ('2019-03-01');
CREATE TABLE order_changes_2019_03 PARTITION OF order_changes
  FOR VALUES FROM ('2019-03-01') TO ('2019-04-01');

...

CREATE TABLE order_changes_2020_11 PARTITION OF order_changes
  FOR VALUES FROM ('2020-11-01') TO ('2020-12-01');
CREATE TABLE order_changes_2020_12 PARTITION OF order_changes
  FOR VALUES FROM ('2020-12-01') TO ('2021-01-01');
CREATE TABLE order_changes_2021_01 PARTITION OF order_changes
  FOR VALUES FROM ('2021-01-01') TO ('2021-02-01');

Partitioning ranges are inclusive at the lower ( FROM ) bound and exclusive at the upper ( TO ) bound. Each month range in the preceding examples includes the start of the month, but does not include the start of the following month.

To create a new partition that contains only the rows that don't match the specified partitions, add a default partition as follows:

CREATE TABLE order_changes_default PARTITION OF order_changes DEFAULT;

Optionally, you can create indexes on a partitioned table as follows:

yugabyte=# CREATE INDEX ON order_changes (change_date);

This automatically creates indexes on each partition, as demonstrated by the following output:

yugabyte=# \d order_changes_2019_02
        Table "public.order_changes_2019_02"
   Column    | Type | Collation | Nullable | Default
-------------+------+-----------+----------+---------
 change_date | date |           |          |
 type        | text |           |          |
 description | text |           |          |
Partition of: order_changes FOR VALUES FROM ('2019-02-01') TO ('2019-03-01')
Indexes:
    "order_changes_2019_02_change_date_idx" lsm (change_date HASH)

...

yugabyte=# \d order_changes_2021_01
        Table "public.order_changes_2021_01"
   Column    | Type | Collation | Nullable | Default
-------------+------+-----------+----------+---------
 change_date | date |           |          |
 type        | text |           |          |
 description | text |           |          |
Partition of: order_changes FOR VALUES FROM ('2021-01-01') TO ('2021-02-01')
Indexes:
    "order_changes_2021_01_change_date_idx" lsm (change_date HASH)

Otherwise, you can create an index on the key columns and other indexes for every partition, as follows:

CREATE INDEX ON order_changes_2019_02 (change_date);
CREATE INDEX ON order_changes_2019_03 (change_date);
...
CREATE INDEX ON order_changes_2020_11 (change_date);
CREATE INDEX ON order_changes_2020_12 (change_date);
CREATE INDEX ON order_changes_2021_01 (change_date);

For the implications of creating an index on a partitioned table as opposed to creating indexes separately on each partition, see CREATE INDEX.

Partitioning is a flexible technique that allows you to remove old partitions and add new partitions for new data when required. You do this by changing the partition structure instead of the actual data.

The following example shows how to remove the partition from the partitioned table while retaining access to it as a separate table which enables you to perform operations on the data:

ALTER TABLE order_changes DETACH PARTITION order_changes_2019_03;

The following example shows how to add a new partition to deal with new data by creating an empty partition in the partitioned table:

CREATE TABLE order_changes_2021_02 PARTITION OF order_changes
  FOR VALUES FROM ('2021-02-01') TO ('2021-03-01');

Note the following:

  • The primary key for a partitioned table should always contain the partition key.
  • If you choose to define row triggers, you do so on individual partitions instead of the partitioned table.
  • Creating a foreign key reference on a partitioned table is not supported.
  • A partition table inherits tablespaces from its parent.
  • You cannot mix temporary and permanent relations in the same partition hierarchy.
  • If you have a default partition in the partitioning hierarchy, you can add new partitions only if there is no data in the default partition that matches the partition constraint of the new partition.

Partition pruning and constraint exclusion

Partition pruning and constraint exclusion are optimization techniques that allow the query planner to exclude unnecessary partitions from the execution. For example, consider the following query:

SELECT count(*) FROM order_changes WHERE change_date >= DATE '2020-01-01';

If the order_changes table is partitioned by change_date, there is a big chance that only a subset of partitions needs to be queried. When enabled, both partition pruning and constraint exclusion can provide significant performance improvements for such queries by filtering out partitions that do not satisfy the criteria.

Even though partition pruning and constraint exclusion target the same goal, the underlying mechanisms are different. Specifically, constraint exclusion is applied during query planning, and therefore only works if the WHERE clause contains constants or externally supplied parameters. For example, a comparison against a non-immutable function such as CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which child table the function's value might fall into at run time. On the other hand, partition pruning is applied during query execution, and therefore can be more flexible. However, it is only used for SELECT queries. Updates can only benefit from constraint exclusion.

Both optimizations are enabled by default, which is the recommended setting for the majority of cases. However, if you know for certain that one of your queries will have to scan all the partitions, you can consider disabling the optimizations for that query:

SET enable_partition_pruning = off;
SET constraint_exclusion = off;
SELECT count(*) FROM order_changes WHERE change_date >= DATE '2019-01-01';

To re-enable partition pruning, set the enable_partition_pruning setting to on.

For constraint exclusion, the recommended (and default) setting is neither off nor on, but rather an intermediate value partition, which means that it’s applied only to queries that are executed on partitioned tables.

  • Overview
  • Declarative Table Partitioning
  • Partition pruning and constraint exclusion
Ask our community
  • Slack
  • Github
  • Forum
  • StackOverflow
Yugabyte
Contact Us
Copyright © 2017-2022 Yugabyte, Inc. All rights reserved.